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TRANSIENT HEAT DISSIPATION FROM STORAGE RESERVOIRS

Z. ROTEM, J. GILDOR and A. SOLAN

Department of Mechanical Engineering, Israel Institute of Technology, Haifa*

Abstract—An analysis of the transient behaviour of internally heated reservoirs or buildings is pre-
sented. New solutions for simplified geometrical models, which take account of both fluid heat capacity
and convection resistance at the walls, are derived as a significant step towards the solution of the
more general problem. The geometrical models considered are: the plane semi-infinite wall in
contact with a well-mixed fluid and the spherical cavity in an infinite solid. Solutions are presented
for both time dependent and time independent heat input rates,

Generally valid graphs and tables for the plane wall case with constant heat input rate are given.

NOMENCLATURE

a, HIK,

A, constant;

&/,  function defined in equation (I-17);

B, constant;

¢, specific heat of solid;

¢y, specific heat of fluid;

e, base of Naperian logarithms;

H, film convection coefficient ;

I, integration operator for complementary
error functions;

Js root of (—1);

K, thermal conductivity;

m, summation index;

M,  mass of fluid in contact with unit wall
area;

n, index; half integer greater than (—1);

Ds Laplace transformation parameter;

g  V(p/);

Q, heat input function;

¥, radius;

R, radius of boundary of spherical cavity;

S, (Pc)wall/M('ﬁ

S, sla;

t time;

te, critical time, defined in equation
(22);

u, fluid temperature;

uy,  initial fluid temperature;

U, function defined in equation (11);

v, solid temperature;

vy,  initial solid temperature;

V, function defined in equation (11);

Ti‘his paper is in part based on an M.Sc. thesis of one
of us (J.G.) submitted in 1960 at this Institute.
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Vo,
X,

tw N

initial temperature of system;

length co-ordinate perpendicular to
boundary;

complex variable;

conjugate complex variable.

The superscript dash signifies transformed
functions, except for Z.

Greek symbols

gamma function;

Kronecker’s delta;

variable, equation (I1-1);
dimensionless root of equation, see (4)
and (18);

root of equation, see (4) and (18);
variable, equation (1I-2);

thermal diffusivity of solid;
variable, equation (II-2);

constant of dimensions 7-%;
summation index;

summation index;

variable;

density of solid;

dimensionless time = s2«f;
dimensionless time = g%«¢;
temperature function, equal to . r.

1. INTRODUCTION

1.1 The problem

TRANSIENT behaviour of internally heated storage
reservoirs or of buildings upon heating up is of
wide interest in technological applications. The
great complication of the problem in its most
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general statement has led to the consideration of
simplified models amenable to analysis. The
reservoir is usually considered to be of regular
shape, filled with a hypothetical fluid, the heat
capacity of which represents that of the contents.
This fluid is usually assumed to be well mixed,
i.e. the temperature differences within the fluid
are neglected. The reservoir contains a heat
source, the output of which may be time depend-
ent or time independent, and heat is lost from
the fluid through convection at the walls of the
enclosure.

Although this system is idealized as compared
with actual conditions, it is thought that the
analysis of such a model forms a useful step to-
wards predicting temperature variation in
practice.

Thus the temperature variation with time of
the system must depend on the heat input, the
thermal capacity of the fluid, the convection
resistance at the walls and the shape of the
enclosure.

1.2. Previous work on the subject

Carslaw and Jaeger [1] investigated this
problem, simplifying the geometrical configura-
tion of the enclosure further. They considered
the case for cylindrical (p. 344) and spherical
(p. 349) cavities in an infinite solid medium, and
presented the solutions in terms of non-tabulated
integrals. For the spherical cavity the possibility
of obtaining solutions explicitly in terms of
complementary error functions is mentioned.
The latter method, which leads to complex
arguments for these functions in many cases of
practical importance, is not elaborated. The
cavity bounded by plane walls was also con-
sidered, but only for simplified cases when either
fluid heat capacity, the film resistance or heat
input were neglected ({11, p. 306-7). As corner
effects were not taken account of, this last
configuration is equivalent to a plane semi-
infinite wall in contact with a well-stirred
fluid.

Wolfe [2] considered a cavity formed by plane
walls of finite thickness, again neglecting corner
effects, and stipulating a constant rate of heat
input. His solution leads to non-orthogonal
eigenfunctions, and the computational effort
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involved in the calculation of practical cascs is
extensive indeed.

1.3. Outline of main results

[t will be shown in the present work that the
simplification of the model to infinitely thick
enclosures does not lead to great errors in
temperatures predicted, in most technological
applications.* On the other hand, neglecting
either fluid heat capacity or contact resistance
at the walls is often not admissible. The present
work presents explicit solutions for the plane
semi-infinite wall and for the spherical cavity in
an infinite solid, taking account of both fluid
heat capacity and convection resistance, and for
heat input rates which may or may not depend
on time. These solutions are more general than
those of references [1] and [2], while also leading
to a great simplification in the computational
work involved, compared to [2].

The solutions, apparently not hitherto pub-
lished, are obtained in terms of recently tabulated
functions [3]. In another paper [4] test results
on a thick-walled room under transient condi-
tions are described, and the applicability of the
theoretical model predictions is established.

2. MATHEMATICAL ANALYSIS

2.1. Solution for cavity bounded by plane walls

Consider a cavity bounded by plane walis of
surface area equal to that of the room, filled
with a well-mixed hypothetical fluid the heat
capacity of which is equal to that of the contents
of the room. Considering the time scale of
temperature variation in technologically signifi-
cant cases, equalization of temperature withinthe
fluid, either by natural convection or (the more
usual case) by forced mixing, is sufficiently rapid
for the well-mixed-fluid simplification to be
admissible,

All physical properties are considered con-
stant. Neglecting corner effects this model
amounts to the consideration of a plane semi-
infinite wall in contact with a well-mixed fluid.
The heat conduction equation for this case is,

&

boe 10 0 (1)
— - =0, >0; x =z

ox2 Kk Ot

* For deep underground reservoirs the solution is
exact.
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and the boundary conditions are:
t=0; u=p=7V, ]

ov
Kd“v 4+ H(u ~v) =0 |r Q)

x=0; Mc;g?—{— Hu—v) = Q(t).J

t>0;x—=0;

Here v is enclosure temperature, u is fluid
temperature, K is enclosure thermal conductivity,
H the film coefficient at the enclosure walls, M
is the mass of fluid in contact with unit wall
area and c;y is fluid specific heat. ¥, is put equal
to zero arbitrarily in what follows.

2.2. The heat input function

Heat is supplied to the fluid at a rate Q(¥),
which is a function of time. The simplest func-
tion will be Q(¢) = Ant® per unit time and per
unit wall area, where 4, is a constant. More
general functions may be represented by a series
of such terms, and the solutions to be derived
here may be superposed, due to the linear nature
of equation (1). For analytical reasons, n must
be an integer or a half integer greater than (—3).

In practical applications, heating by steam
coil at approximately constant steam tempera-
ture will give rise to “equivalent” exponents n
smaller than zero. This, as with a rise in fluid
temperature heat output is reduced. On the
other hand, if the steam is supplied from a
boiler during the starting up period, or if an
electrical heating method is used, » may be zero
or larger.

Applying the Laplace transformation [5] to
(1) and (2) the following result for the trans-
formed temperature & is obtained (see Appendix
I-a):

ase~% Anl(n 4 1)
Kpg(g®*+aq+as)” pr

where the parameters ¢ = H/K; s = (pc)wan/Mcy

both have the dimension of |L|~L. p is the Laplace

transformation parameter, and g = 1/(p/x). I' is
the gamma function.

U=

3

* The initial temperatures u,, v,, respectively V,, may
be put equal to zero arbitrarily. In case the temperatures
u, and v, are different, a more general solution may be
obtained by superposition of [1], p. 307, case (iii) on the
solutions given here.
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The inversion of & will be performed by
splitting (3) into partial fractions.

2.3. Investigation of the roots of the denominator
polynomial of equation (3)
The two roots with reversed algebraical signs
will be given by

m= 2=} — /G- S,

a

=E_y+vd-9 @
where S is the dimensionless ratio s/a.

In case the roots are different (real or com-
plex), then

5 — ase— 1% ( 1 1 )

T Kpg,—m)\g+n, g+ m
/IF(n—l—l)
”,,n )

It is shown in the appendix (I-b) that the
inversion of 7 gives the following result for the
enclosure temperature:

asAyI'(n 4 l)
=K, — ) Z(‘) C

{enryx+xt @' erfc [2\/( t) + ’7,, (KI)J

24+ 1

Z [[ 2, \/(Kt)]"‘lmerfc2 Vo )J} (6)

This result may now be differentiated and
inserted into the second of the boundary con-
ditions (2) to give an expression for fluid
temperature in dimensionless form:

aIYn

S (1)

{(l — %) «t (') erfc [, V()] — 1

41

(s2%)"Ks
u n

* a«/l(xt) TG )/2])]}- ™
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For the special case when the heat input rate is Table 1. uKs/A, as a function of + for various S. Cuse of
constant, i.e. n = 0, plane semi-infinite wall

Q = Ayt® == A, = constant

uk's uKs
- v
and from (7) 4, : T A,
Ks 2 1 (1) H—0,5=0 |
L vt G E—— 0 0 1440 0733
2T 0-0004 0000394 1690 0825
Sem1 2* erfc TEY/2] — p3emett erfe *)1/2 0-0016 0-001553 1-960 0918
s ()] = L1 o036 0003444 | 2250 1-014
(8) 0-0064 0006034 | 2:560 1111
0-0100 0-009295 ‘ 2:890 1-210
where the dimensionless time * = ¢?«¢ and 0-0144 0013197 . 324 1-310
. = S. 0-0256 0-02282 361 1-399
Computational results of this equation of an gig‘;gg 8:843132(5) | i:gg }:c;gz
accuracy and range which should cover most 0-0784 0-06452 576 1-91
applications are given in Table 1. 01024 008214 | 676 212
It is often more convenient to use a different g‘iégg g‘ig;‘ g‘gé ;;?
dimensionless group: 0-1936 01443 10-24 278
0-2304 01677 11-56 300
ul 2 () 4 | — 1.1 02704 01923 12:96 321
Ay A7 S S 1 03136 02181 14-44 3-43
. 0-3600 0-2448 16-:00 3-65
Sem?” erfc [y (7%)12] 0-4356 02868 17-64 3-87
8ok w12 0-5184 0-3306 19-36 4-09
— mizerfe [r(T*) 2]} (9) 06084 03762 2116 431
. . . 0-7056 0-4234 23-04 4-53
Equation (9) is more convenient than (8) for 0-8100 0-4721 250 475
graphical representation of many cases of 1-000 0-5560 49-0 698
practical importance. Plots are given in Fig. 2. 1:210 0-643 | 1000 10-34
It may be remarked that by superposition of
solutions (7) for various #, fluid temperature for (b) S =02 f
any analytical heat input function may now be 8001885 8001877 g‘iiii é 8‘%???2
cal-culaied‘,d with desk calculators as sole compu- 0003350 0-003331 05236 036921
tational aid. _ , _ 0005236 0-005181 07540 049241
Further, for very large dimensionless times, 0-016965 0-016465 1-0263 062301
the solution above asymptotically approaches 003540 003350 13404 075942
0:06053 0-05559 1-6965 0-90017
uH 2 0-09236 0-08239 1-9102 0-97902
Ry () LI N (10) 0-13092 0-11307 36493 1-54781
0 \/"T S 0-18850 0-15630 7-6407 2:43761
. 0-25676 0-20417
Thus, a steady state is not approached.
Investigation of the solutions (6) and (7) for (9S=1/4
. kind froots 0 0 1-00 0-6235
various kinds o o 00484 0-0453 1-44 0-8154
(a) Both roots real. This implies S < L. The 00676 00622 2.25 1-1165
values of the error function may be taken from 0-0900 0-0813 289 1-3245
standard tables and computed results may be 0-2025 8;82: 2:(2)‘5) 51?3(‘,
obtained from the equations. 8%288 02774 1225 3277
(B) Both roots complex. This implies S > §. 0-4900 03571 25-00 4932
Tables for e—#*.erfc (z) have recently been 0-640 0-442
published [3]. However, the form in which these
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Table 1.—continued

uKs ukKs
T ‘—/10~ T 1/10

(dS=1/3
0 0 0-691 0-484
0-00853 0-00841 0-941 0-618
0-01333 0-01309 1-333 0-795
0-01920 0-01876 1-920 1-031
0-02615 0-02535 2:613 1-273
0:03413 0-03285 3413 1-519
0-04320 0-04120 4-320 1-769
0-05333 0-04789 6453 2:276
0-07679 0-07125 7680 2-528
0-1045 0-09498 9-013 2:783
01728 0-15096 10-453 3-040
0-2581 0-21396 20-144 4-444
0-3605 0-28470

©S=1
0 0 1-6132 1-0805
0-00853 0-00848 1-9199 1-2243
0-01333 0-01324 2:2533 1-3687
0-01920 0-01906 2-6131 1-5132
0-02615 0-02571 3-0000 1:6574
0-03413 0-03364 34132 1-8010
0-04320 0-04241 3-853 1-981
0-05333 0-05212 | 4-320 2087
0-07679 0:07427 5-333 2:370
0-10453 0-10016 6453 2:650
0-13652 0-12933 7-680 2:927
0-1728 0-1615 9-013 3:202
0-2133 0-1977 10-453 3-475
0-2581 0-2344 11-999 3-747
0-3072 0-2749 13-653 4-017
0-3605 0-3171 15:413 4-287
0-4181 0-3618 17-279 4-554
0-4800 0-4086 19-077 4-823
0-5808 0-4810 21:332 5-090
0-6912 0-5570 23-519 5-356
0-8321 0-6352 25-812 5622
0-9407 0-7159 28-212 5-887
1-0799 0-7983 30-718 6-152
1-3333 0-9380 33-331 6417

fs=28
0 0 8-258 5-603
0-08258 0-08221 16-186 8411
0-16186 0-16063 33-032 11-638
0-47557 0-46176 7433 15-66
1-32128 1-26270 206-5 22-6
4-0464 3-2794

functions are given needs some modification for
our purposes, (see Appendix 1I).

For convenience, the arguments are hence-
forth applied to the case of constant heat input

only. The solution (9) may be written:

g

(1 - 5) U = b e e

3 1/S * 1/2 1 *31/2
RN )VW(S DL EHV
(i1
where U and V are functions explained in
Appendix II.
(y) Both roots equal and real, i.c. S = }. From
(3) we now have

. ase 1% Apl'(n 4 1)
 Kpg(g+a/2”  pr
Proceeding as outlined above, the enclosure

temperature may be found (Appendix I-c). We
restrict ourselves here to giving the result for

(12)

‘n =0 only:

(2 + x) erfc —
7 2\/( 1)

2
+ (*, —x— 2m,') en' et (0')?
7

.erfe [27—2([) + 7)'\/(1([)]}; = g. (13)

Fluid temperature is derived again as before:
uH 3

TN

et erfc

V7t
. 14
)
Now it can be seen that for all solutions, the
dimensionless function wuH/A, depends on
the dimensionless characteristic time +* and on
the parameter S only.

Asymptotic solutions (limiting cases)
Limiting cases of S = 0 may correspond to
either (a) an infinitely great total fluid heat
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capacity (s = 0), or (b) zero film heat convection
resistance (a = c0). At the other extreme
S = co may be obtained with either (c) no fluid
heat capacity (s = c0), or (d) infinite convection
heat transfer resistance (@ = 0).

The asymptotic solutions are examined in
Appendix IlI-a. They lead to known classical
results.

2.4. Solution for the cavity of spherical shape
Equation (1) and boundary conditions (2)
take the following form:

ov 2 200
o= (”a‘r‘2+? é;) ()
t=0 u=p=1Vy,=0
ov
t>0;r =R, K—5;+H(u~li):0 ‘
(16)

d
r=R; Mcy -d—?—l— Hu—v) =Aun

r—> o0; vto remain finite.
The transformation ¢ = vr brings (15) back to
the form of (1).

Using operational calculus on the transformed
equation yields a result for enclosure temperature
(Appendix I-d):

a’RsA,I'(n +- 1) 1
""(’71 — M) — M)z — M) 1

o1 y(_ﬂz kL 3) + 3, u(ﬂ 3 ) + 3, v(”ql "72_)

( 7, )2n+1

. {eﬂv (r—R)+xn,% erfC [25’—*\7(71:) + nv\/(Kt):,

MZ{[ zun(Kt)]mlmerfczv( t)]} a7

where 7, are the roots of the cubic equation
(with reversed algebraical sign),

¢+ (a4 1/Rq?>+ asq + as/R =0  (18)
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and §,, is Kronecker’s delta. Similarly. fluid

temperature is given by,
025‘/1 F(n 4- 1)

e M2 ("Iz 773)(773 )

HK"("Yl
3

?gig"la VRS 837;'(’717 )

81;»(7)2' 773)
T ")21;»1

Ly (-

1 .
' {([ + g mla) entertofr, (en)

2n

l/a N\ ‘ T
+ V(mrt) ;’i., L el
| 1+ laR  la , ]\t
[1 (m/2) + 11 /(<) T[(m + 1)/2] |

(19)

For constant heat input, i.e. n =0, equation

(19) reduces to
Ku

AR~

(n — ”’72)(’72 - "73)(’73 — M)
3 .
. ? {81;»(772*’73)‘*‘ 82»(’73“”’)1)‘{’ 33.;(’73
- My

v=1

[(1-+aR— Ry Jenexfo n, /(<] — (1 +aR)]}.

—s)

(20)

For constant heat input (n = 0), the limit when
t— o0 1s,
uk 1
AR g
i.e. steady state is approached, as time increases.
Equations (17-20) have been investigated in
the manner of (6-9) for the various kinds of
roots of (18), viz.
(a) Allroots 5, real and different.
(8) Two roots conjugate complex, one root

real.
(y) All roots real, two roots identical.
(8) All roots real and identical.

The investigation is rather cumbersome and will
not be described here.* Again, (8) leads to com-
"% Interested readers may obtain the details of the
derivations from one of the authors (Z.R.).

(2n
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plementary error functions with complex argu-
ments.

Limiting cases were again investigated as
before and results are given in Appendix IlI-b.

3. GRAPHICAL REPRESENTATION
Inspection of all equations giving solutions
for v and u for the plane-wall case will reveal
two alternative methods of plotting, both having
n as a parameter of the whole plot:

uKs .
a) -~ versus 7, with § as a parameter;
A

nf(s%<)"

or

H
(b) W versus 7* with S as a parameter.
n

All these groups are dimensionless variables.
For the exponent n = 0, method (a) will be more
useful for those cases where s is not expected to
approach the extreme values of zero or infinity,
while the second method is suitable provided a
does not approach those limits. Figs. (1) and (2)
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practical heating- and ventilating applications
the solutions with complex roots will be applic-
able. As an example, for air at atmospheric
pressure and temperature, of an equivalent
thickness of 3 m in contact with any wall, with
H = 15 kcal/(m? degC h), and walls of standard
concrete, S will be equal to 30.

A repetition of the same argument for the
case of the spherical cavity leads to the con-
clusion that here the dimensionless groups are,
for any constant exponent n, the same as those
given above. However, an extra parameter equal
to aR also appears. It is, therefore, impractical
to show general plots valid for all values of aR.

4. DISCUSSION
4.1. Demonstration of the accuracy of the method
when applied to finite walls
The case calculated by Wolfe [2] related to air
contained by concrete walls only 8 in thick, and
to constant heat input. Table 2 gives a com-
parison of Wolfe’s data and those calculated
from (11).

FiG. 1. Dependence of uKs/A, on 7 = s«t.

give such plots for the plane-wall case, with
constant heat input. Table 1 gives numerical
data for this case.

In practical cases the value of the parameter
S will be within the range of 10-500 for air en-
closed in concrete walls, while for water S will
be rather less than [.* Thus it is seen that for all

* An exception to this is the case when the fluid is
enclosed in a metal container buried in the soil: the
contact resistance is here determined by the heat transfer
between the outer metal envelope and the soil, and may
be rather high. Thus S will be large.

Thus, it is seen that for periods shorter than
20 h, the error caused by assuming the walls
infinitely thick is smaller than 2-5 per cent.

A similar result was obtained from tests [4].

4.2. Comparison between the plane infinite-wall
model and the spherical cavity model as
applied to a cubical room

This comparison was carried out for a cubical
room containing air at atmospheric pressure

and temperature, with H = 3 kcal/(m? degC h),
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Fic. 2. Dependence of uH/A, on +* = ««i.

S = 260, and constant heat input. The com-
parison was carried out for equivalent envelope
area. Table 3 gives the results.

In actual practice, aroom of doubly rectangular
cross section is, of course, much better repre-
sented by the geometrical model of a sphere
than that of plane walls with no corner effects
[6, 7]. But from Table 3 it is clear that for short

Table 2. Comparison of Wolfe's data with results obtained
through equation (11)

h) 5 10 20 30 40 50 70

095 114 1405 1-583 169 174 181

uld,
equa-
tion (11) 198 225

0969 1-165 144 1647 1-83

Differ-
ence
(percent)| 1-97 2-1 2:5 4-1 83 139 243

Table 3. Comparison of plane-wall model to spherical cavity
model for a cubical room, large S

Equivalent |Time to reach| Time for Time for
radius 99-5 per cent | difference difference
(m) steady state in u/d, not
temperature | between the | exceeding
for sphere ' two models | 15 per cent
(years) Inot exceeding (h)
i { 3-15 per cent
| (h)
691 300 100 1000
2-00 24-5 8-16 81-6
050 15 0-51 51

times the graphical plots given for the plane-
wall model may be used for practical configura-
tions, with small errors only.

4.3. Other approximate solutions

Krischer [8] has proposed an approximate
calculation method assuming that initially there
is no heat dissipation to the walls, while from a
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certain critical time onwards, all heat input is
dissipated through wall conduction. The critical
time is given by

(22)

With 7, assumed as zero datum, wall temperature
thereafter is calculated as for the constant flux
case ([1], p. 75).

The temperature variation according to
Krischer, for § = 20, is also plotted in Fig. 2.
As would be expected the greatest error, com-
pared to the exact solution, is obtained around
the critical time.

Another approximate method used for heating
and ventilating purposes is to neglect air heat
capacity. The errors of both Krischer’s method
and this latter assumption are compared to the
exact solution for infinitely thick walls in Fig. 3.
The maximum error of Krischer’s method is
secen to be at +* = 0-05: this corresponds to
about 5 min for a practical case considered.
Even after 15 min the discrepancy is still 15 per
cent.

5. CONCLUSIONS
Solutions for two models representing a room
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containing a heat source with time dependent
output, filled with a well-mixed fluid of finite
heat capacity are given. Heat is dissipated to the
walls with finite film heat-transfer resistance.

The two models considered are: the plane,
infinitely thick wall and the spherical cavity in
an infinite solid. All physical properties were
assumed constant.

It is shown, that in most practical cases arising
in air-conditioning technology, the problem
leads to solutions expressed in terms of error
functions with a complex argument. In some
cases of storage reservoir technology the
arguments will be real.

These solutions, which to the best of our
knowledge have not been previously published,
represent generalizations of well known partial
solutions for semi-infinite solids.

Wolfe [2] considered a model closer to real
conditions in one respect: with his model the
cavity was bounded by plane walls of finite
thickness, with heat convection on the outside
taken into consideration also. This was done for
constant heat input rate only, and neglecting
corner effects.

The results given here are much simpler than
those obtained by Wolfe, and moreover lend

80

70

60

T
Solution based on

‘assumption s=00

50

Yo

40

30

Krischer’s solution

uH

Error in
A

\
N\
N

N
\\\
~

0001 2 3 4 567800l z

E3
r=axt

3 4 5 6780 2 3

FiG. 3. Deviation of two approximate solutions from the exact semi-infinite wall solution (S = 20),
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themselves to generalization for non-constant
heat input. Also, solutions were derived for the
spherical model which, for thick walls (where
corner effects are significant) should give results
more accurate than those for the plane wall.

Table 2 shows that the solutions here given are
of adequate accuracy even for the practical
configuration considered by Wolfe. In an
engineering context, the possibility of giving the
general solution in a graphical plot must be
considered an important advantage.

The assumption of simpler models in engineer-
ing usage, such as neglecting fluid heat capacity,
or the Krischer assumption can, on occasion,
lead to considerable error, especially when
applied to the design of a heated reservoir
(small S). Estimates of the error for a case of air
conditioning is given in Fig. 3.

[t is interesting to note that the model employ-
ing infinitely thick plane walls will not tend
asymptotically towards steady state as time goes
on (at constant heat input). Here, again, the
spherical model is qualitatively closer to actual
conditions in that for constant heat input it does
tend towards steady state.

Lastly, it is seen that for any given configura-
tion and for all cases of heat input function
discussed here, U/A, is a unique function of
dimensionless time.
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APPENDIX 1
(a) Derivation of equation (3)
Applying the Laplace transformation to (1)
and (2):
d@  p . e,
PR

x =0 Kdd/dx + H(@@ - ¢) — 0 (1-2)

(I-1)

t>0;
x =0; Mcs(pi — uy)

I'n+1)

+ H@i — 0) =y i (1-3)

In what follows ¥V, is put equal to zero arbi-
trarily. Eliminating & between (I-2) and (I-3),

(g Mep) 4B Mep o An Tnt 1)
H | dx K K prtt
n - 4
x==0. (1-4)

The solution of equation (I-1) taking (2) into
account, is

7= Ae % 4 Beti® g0 (I-5)

where ¢ = p/x; as the temperature has to be
finite everywhere B = 0.

Inserting (I-5) into (I-4) will furnish A4: then
the solution of (I-1) is given by (3).

(b) Derivation of equation (7)
The inverse Laplace transformation of

et
pr lq(qi _};';,"’-)
gives
!
;méﬂﬁli
{en z-xt (') erfe (

2n -+ 1
’ mm { \ 1 -
— Z [[Hzn V(xDImim erfe \/(Kt)J ;- (1-6)
m =0

Inserting this into (5) and rearranging will
furnish (6). This last equation may be differenti-
ated, giving

3(x t)+71 \/(Kt))
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ov  asdaI'(n+ I)Z (—1y
(=

v " o @Kt (n'2)
ox — k"K(n, — ;) 7, )+ {m

X , 1
e (5 e IV 30

zil [[ 2.4/ (xt)]mim 1 erfe N t)]}

mo=1
(I-7)

Inserting (6) and (1-7) into the second boundary
condition (2) gives an expression for fluid
temperature, (7).

(c) Derivation of equation (14)

The application of the inversion theorem to
(12) may be simplified by differentiating (I-6)
with respect to the parameter »’. Hence the
inverse transformation of

e 1
prHglg + ')

1 1 2n+ 1) ,
BT 2 L R

Len'ztet(N? erfe [2\/( ) + 7 \/(Kt):l
—24/(xt/m) . e—x/4xt

2n7_—{:\1
+$Z 2+ 1) — m]

m =0

[[-421, VD erfe 7 24/(x t)]}

The solution for v is again obtained by multi-
plying expression (I-8) by [(as/K). A,I'(n + D).
It is convenient to discuss the properties of the
solution on the simpler case of time independent
heat input, i.e. for n = 0. This leads to equations
(13) and (14).

(1-8)

(d) Derivation of equation (17)
The transformation ¢ = vr brings (15) back

to the form of (1):
o¢ 0%

ha. R

ot or (1-9)

with boundary conditions,

t=0 d=u=20
g
or

(1-10)

=d¢(a+ 1/R) — aRu
(I-11)

t>0; r=R;

d
Mes »d’; + H(u — $/R) = A,
(-12)
Applying the Laplace transformation to equa-
tions (1-9) through (I-12) yields:
dzé
s d 9

r=R;

t>0; R<r< w; q2q§+i’i§

dé

=0 (I-13)

= $(a+ 1/R) — aRi (1-14)
Mcy(pii — uy) + H(ii — $/R)
= Anl(n + Dfpn+t. (I-15)
The solution of these equations leads to
¢ =slew d-16)
where &/ is given by
)
etaR
"[pMcs/(aR)}(g+a+ 1/R) -+ [H/(aR)](g+ 1/R)
(1-17)

The subsequent calculations are carried out in
a similar manner to those for the plane wall, The
end result is equation (17).

APPENDIX II

Complementary error functions with complex

- arguments

The tables, reference [3], give values of the
function,

-w(z) =e (l + ?/jﬂr et dC) (II-1)

where
z=10+4jA (11-2)
thus:
w(z) == U(8; A) + jV(0; A).

Tabulated values of U and V are given.

(11-3)
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Now from (11-1),

2 '
o5 (l T ." P dC) — % erfe .
NT Jo
(11-4)

w(jz) -~

Thus from the tabulated values, erfc (z) may be
obtained, taking & as the imaginary variable and
— A as the real variable. Also, symmetry with
respect to the imaginary axis in the A, § plane
implies the same in the U, V plane. Thus,

e?erfcz = U(X; 0) — jV(A; 0)
e?* erfc 7 == U(X; 0) + jV(]; 0).

For the case discussed, the two roots, equation
(4), are the two conjugate complex variables =
and =.

(I1-5)
(11-6)

APPENDIX III
Asymptotic solutions
(a) The plane wall case

The asymptotic solutions corresponding to
cases (a) through (d) of paragraph 2.3 of the
paper are here investigated. These asymptotic
solutions are of significance as they delimit the
range of possible solutions in Figs. 1 and 2.

For case (a) (S =0) a trivial identity is
obtained from the general solution, implying no
change in fluid temperature with time. In order
to analyse case (b) (¢ = o0), it is convenient to
write (6) for n == 0 in terms of a characteristic
time which does not include the constant a:

vks _ 2

= " pl2e—atidnt (] - sx)erfe
0 VT

2 /( t)
_jl _ 1 {7]1-:(371137"'5'2*7]1(“’
”’)2 - [
X
.erfc [ma- /S + 2y (Kt):l
1
e o 2om227/ 82y,
nien: 1% erfe l:nz'r 2/S + 2\/(Kt)]f
(II1-1)
where = = s2xt. The limit for S = 0 involves the

calculation of
lim (ef* erfc £) = 0
I Sas]
which is easily obtained by application of
I'Hopital’s rule. Thus for S = 0 (case b),

(111-2)

tKs 2
dyooww

. .
AL ST orfe ol2
i ¢ erfc (.2\’/,(“) T )

The last equation is identical with the classical
result ([1], p. 306, equation 12) Fluid tempera-
ture is obtained by settmg x =0 in (II-3).

Case (c) (s = ~): it may be seen from (6),
again limiting consideration to constant heat
input (n == 0), that as s-- o,

EK =2 Kt) L2/AkE fe X 111-4
a4," (77/ e xer cz\»y(;—t—). (111-4)

Equation (111-4) is again in agreement with the
classical result ([1], p. 75, equation 7).

Case (d) (a = 0) corresponds to zero heat
dissipation to the walls. After considerable
manipulation the result v = 0 is obtained from
cquation (IlI-1). Thus fluid temperature rises
linearily with time, i.e.

uKs
Ay 7

X
rlig 4%t (] Jyx)erfc .
) 24 (xet)

(HI-3)

s (111-5)

Cases (b) and (d) are represented by curves
S =0 and S = o in Fig. | respectively, while
case (c) is represented by the curve S = w0 in
Fig. 2.

(b) The spherical case

Only the non-trivial cases ¢~ o and s - w0
are investigated here.

For a — oo (zero contact resistance), one of
the three roots of (18) increases without bounds.
The limit for (17) becomes,

Zﬁl’;e = I; ILerfc ( /( ﬁ) Z‘ . ena (r—1) +n,2xt
.erfc [Zyi’_f(;tr)di_ Mg/ (Kt)]
N eny r—R) 4t
T
.erfc [ V(kt) 4y (Kl)]} (111-6)

For s — o (zero fluid heat capacity) (20) gives
as limiting value (4), p. 248 of reference [1].
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Résumé—Une analyse est présentée du comportement en régime transitoire d’un reservoir contenant
du fluide bien mélangé. Des solutions nouvelles données se rapportent & des modéles géometriques
simples, en prenant cependant compte de la variation de I’enthalpie totale du fluide avec le temps, et
de la résistance 4 la transmission de la chaleur par convection aux parois. Ainsi, les résultats font
avancer la solution du probléme en toute sa généralité. Les modéles géometriques subis & P'analyse
sont la parois plane semi-infinie en contact avec du fluide bien mélangé, et la cavité sphérique dans
un solide d’étendue infinie. La fourniture de la chaleur peut étre soit & débit constant, soit 4 débit
variable avec le temps.

Des représentations graphiques de validité générale et des tables numériques sont données pour le

cas de la paroi plane et du débit de la chaleur constant.

Zusammenfassung—FEine Untersuchung der zeitabhingigen Temperaturdnderung von intern be-
heizten Fliissigkeitsspeichern ist in der vorliegenden Arbeit wiedergegeben. Neue Losungen fiir
einfache geometrische Modelle, die immerhin den Wirmeinhalt der Fliissigkeit und den Konvektions-
widerstand an den Winden mit in Betracht nehmen, werden behandelt, als ein Schritt zur Losung
des allgemeineren Problems.

Die geometrische Modelle sind: die halbunendliche flache Wand in Beriihrung mit gut gemischter
Fliissigkeit und der kugelférmige Hohlraum. Lsungen fiir Zeitabhingigen und Zeitunabhingigen
Warmestrom werden wiedergegeben.

Allgemeingiiltige graphische Darstellungen sowie Tabellen fiir den Fall der flachen Wand und

Zeitunabhingiger Wirmezufuhr sind in der Arbeit enthalten.

Annoramua—B crarbe H3JaraeTCA HCCAeJOBANNE B3ABICHMBIX OT BPEMEHH H3MeHeHHH TeMite-
PATYpLl B HATPETHIX U3-BHYTPH COCYIaX HATIOIHENHHX KUIKOCTI0. PaccMaTpuBaoTes HOBBE
paspellieHHA IJIA NPOCTHIX TeOMEeTPHYECKHX Mofeseil, MPUYEM VUHTHIBAGTCHA TEIIIO8MKOTCH
AHAKOCTIL & TAKME KOHBEKI[UOHHOE CONPOTHBIEHIE Y CTEHOK. OTH UCCIAGIOBAHKA MpI-
fIKAIT HAC K PABPEILeHHI0 Bompoca B obmeit dopme.

PaccmatpuBalorca fBe TreoMeTpuuecKile MOTEIH: OJHA M3 HIX 9TO MOXY-(Ge3KOHEYHAsA
IJTOCKAA CTeHKA B COIPIKOCHOBEHHII ¢ XOPOIIO CMEIIAHHOI MIKOCTBIO, APyTas TO Wapo-
ofpasHas MOJOCTL. B crarke IIpeIcTABIEHHl PA3PEIIEHHS TPH 3ABICUMOM, a TAKMKC NpPH
He3ABHCHMOM OT BPEMEHH, NPHTOKE TermJia.

ITpusogaTca ofimte rpafiudecKie H3JMOMEHIA M YHCIEHHBIE TAOJXUOBLL A II0CKOi

CTCHKH TTPH IIOCTOSIHHOM NPHTOKE TerJa.
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