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TRANSIENT HEAT DISSIPATION FROM STORAGE RESERVOIRS 

Z. ROTEM, J. GILDOR and A. SOLAN 

Department of Mechanical Engineering, Israel Institute of Technology, Haifa* 

Abstract-An analysis of the transient behaviour of internally heated reservoirs or buildings is pre- 
sented. New solutions for simplified geometrical models, which take account of both fluid heat capacity 
and convection resistance at the walls, are derived as a significant step towards the solution of the 
more general problem. The geometrical models considered are: the plane semi-infinite wall in 
contact with a well-mixed fluid and the spherical cavity in an infinite solid. Solutions are presented 
for both time dependent and time independent heat input rates. 

Generally valid graphs and tables for the plane wall case with constant heat input rate are given. 

NOMENCLATURE Va, initial temperature of system; 
HIK; x, length co:oFdinate perpendicular to 
constant; boundary; 
function defined in equation (I-17); 2, complex variable; 
constant; 2, conjugate complex variable. 
specific heat of solid; 
specific heat of fluid ; The superscript dash signifies transformed 

base of Naperian logarithms; functions, except for Z. 

film convection coefficient; 
integration operator for complementary Greek symbols 
error functions ; 
root of (- 1) ; 
thermal conductivity; 
summation index; 
mass of fluid in contact with unit wall 
area; 
index; half integer greater than (-4); 
Laplace transformation parameter; 
d/(PIK) ; 
heat input function; 
radius; 
radius of boundary of spherical cavity; 
(pc)wa11/Mc.f; 

sla ; 

time; 
critical time, defined in equation 
(22) ; 
fluid temperature ; 
initial fluid temperature ; 
function defined in equation (11); 

gamma function; 
Kronecker’s delta; 
variable, equation (II-l); 
dimensionless root of equation, see (4) 
and (18); 
root of equation, see (4) and (18); 
variable, equation (U-2); 
thermal diffusivity of solid; 
variable, equation (11-2); 
constant of dimensions T-n; 
summation index; 
summation index; 
variable; 
density of solid; 
dimensionless time = S’Kt; 

dimensionless time = a2Kt; 
temperature function, equal to u . Y. 

1. INTRODUCTION 
solid temperature; 
initial solid temperature; 

1.1 The problem 

function defined in equation (11); 
TRANSIENT behaviour of internally heated storage 
reservoirs or of buildings upon heating up is of - _ -~- ~~~ ___ 

* This paper is in part based on an M.Sc. thesis of one wide interest in technological applications. The 
of us (J.G.) submitted in 1960 at this Institute. great complication of the problem in its most 

I 
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general statement has led to the consideration of 
simplified models amenable to analysis. The 
reservoir is usually considered to be of regular 
shape, filled with a hypothetical fluid, the heat 
capacity of which represents that of the contents. 
This fluid is usually assumed to be well mixed, 
i.e. the temperature differences within the fluid 
are neglected. The reservoir contains a heat 
source, the output of which may be time depend- 
ent or time independent, and heat is lost from 
the fluid through convection at the walls of the 
enclosure. 

Although this system is idealized as compared 
with actual conditions, it is thought that the 
analysis of such a model forms a useful step to- 
wards predicting temperature variation in 
practice. 

Thus the temperature variation with time of 
the system must depend on the heat input, the 
thermal capacity of the fluid, the convection 
resistance at the walls and the shape of the 
enclosure. 

1.2. Previous work on the subject 
Carslaw and Jaeger [l] investigated this 

problem, simplifying the geometrical configura- 
tion of the enclosure further. They considered 
the case for cylindrical (p. 344) and spherical 
(p. 349) cavities in an injinite solid medium, and 
presented the solutions in terms of non-tabulated 
integrals. For the spherical cavity the possibility 
of obtaining solutions explicitly in terms of 
complementary error functions is mentioned. 
The latter method, which leads to complex 
arguments for these functions in many cases of 
practical importance, is not elaborated. The 
cavity bounded by plane walls was also con- 
sidered, but only for simplified cases when either 
fluid heat capacity, the film resistance or heat 
input were neglected ([l], p. 306-7). As corner 
effects were not taken account of, this last 
configuration is equivalent to a plane semi- 
infinite wall in contact with a well-stirred 
fluid. 

Wolfe [2] considered a cavity formed by plane 
walls of Jinite thickness, again neglecting corner 
effects, and stipulating a constant rate of heat 
input. His solution leads to non-orthogonal 
eigenfunctions, and the computational effort 

involved in the calculation of practical casts is 
extensive indeed. 

I .3. Outline qf main results 
It will be shown in the present work that the 

simplification of the model to infinitely thick 
enclosures does not lead to great errors in 
temperatures predicted, in most technological 
applications.* On the other hand, neglecting 
either fluid heat capacity or contact resistance 
at the walls is often not admissible, The present 
work presents explicit solutions for the plane 
semi-infinite wall and for the spherical cavity in 
an infinite solid, taking account of both fluid 
heat capacity and convection resistance, and for 
heat input rates which may or may not depend 
on time. These solutions are more general than 
those of references [l] and [2], while also leading 
to a great simplification in the computational 
work involved, compared to [2]. 

The solutions, apparently not hitherto pub- 
lished, are obtained in terms of recently tabulated 
functions [3]. In another paper [4] test results 
on a thick-walled room under transient condi- 
tions are described, and the applicability of the 
theoretical model predictions is established. 

2. MATHEMATICAL ANALYSIS 

2.1. Solution for cavity bounded by plane walls 
Consider a cavity bounded by plane walls of 

surface area equal to that of the room, filled 
with a well-mixed hypothetical fluid the heat 
capacity of which is equal to that of the contents 
of the room. Considering the time scale of 
temperature variation in technologically signifi- 
cant cases, equalization of temperature within the 
fluid, either by natural convection or (the more 
usual case) by forced mixing, is sufficiently rapid 
for the well-mixed-fluid simplification to be 
admissible. 

All physical properties are considered con- 
stant. Neglecting corner effects this model 
amounts to the cotisideration of a plane semi- 
infinite wall in contact with a well-mixed fluid. 
The heat conduction equation for this case is, 

* For deep underground reservoirs the solution is 
exact. 
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and the boundary conditions are: 
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du 
1 (a* 

x = 0; Mcf dt + H(u - v) = Q(t). 
J 

Here u is enclosure temperature, u is fluid 
temperature, Kis enclosure thermal conductivity, 
H the film coefficient at the enclosure walls, M 
is the mass of fluid in contact with unit wall 
area and cf is fluid specific heat. V,, is put equal 
to zero arbitrarily in what follows. 

2.2. The heat input function 
Heat is supplied to the fluid at a rate Q(t), 

which is a function of time. The simplest func- 
tion will be Q(t) = A# per unit time and per 
unit wall area, where (1, is a constant. More 
general functions may be represented by a series 
of such terms, and the solutions to be derived 
here may be superposed, due to the linear nature 
of equation (1). For analytical reasons, n must 
be an integer or a half integer greater than (-4). 

In practical applications, heating by steam 
coil at approximately constant steam tempera- 
ture will give rise to “equivalent” exponents n 
smaller than zero. This, as with a rise in fluid 
temperature heat output is reduced. On the 
other hand, if the steam is supplied from a 
boiler during the starting up period, or if an 
electrical heating method is used, n may be zero 
or larger. 

Applying the Laplace transformation [5] to 
(1) and (2) the following result for the trans- 
formed temperature t is obtained (see Appendix 
l-a) : 

ase-qx 

’ = Kpq(q2 + aq + as> * 
nX(n + 1) 

pn (3) 

where the parameters a = H/K; s = (p~)~&Mcf 
both have the dimension of IL] -l. p is the Laplace 
transformation parameter, and q = .\/(p/K). T is 
the gamma function. 

* The initial temperatures u,,, uO, respectively V,, may 
be put equal to zero arbitrarily. In case the temperatures 
u,, and v0 are different, a more gerieral solution may be 
obtained by superposition of [l], p. 307, case (iii) on the 
solutions given here. 

The inversion of d will be performed by 
splitting (3) into partial fractions. 

2.3. Investigation of the roots of the denominator 
polynomial of equation (3) 

The two roots with reversed algebraical signs 
will be given by 

, 

72 = ; = 8 + l/G - S) (4) 

where 5’ is the dimensionless ratio s[a. 
In case the roots are different (real or com- 

plex), then 

ase-qx 

( 

1 1 

’ = Kpq (7; - 7:) 
----7 
4 + 7; 4 + 72 1 

C$k!!). (5) 

It is shown in the appendix (I-b) that the 
inversion of 0 gives the following result for the 
enclosure temperature : 

- [-27:d(Kt)]“im erfC ~ 
2-J;Kt) II ’ @) %i=” 

This result may now be differentiated and 
inserted into the second of the boundary con- 
ditions (2) to give an expression for fluid 
temperature in dimensionless form : 

eKt WV)‘. erfc [pi d(d)] - I 

- 2_ [r-7: T4Kt)l” (&) _+ 11 
____- 

WI=, 

1 1 ~ - 
+ az/(Kt) ’ r[(m + lY21 111 * (7) 
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For the special case when the heat input rate is 
constant, i.e. n = 0, 

Q = A,t” = A, =- constant 

and from (7) 

{~~eql’+* erfc [Q(T*)~/~] - vie?+’ erfc [~2(7*)1j2]} 

(8) 

where the dimensionless time T* = a2~t and 
171. 112 = s. 

Computational results of this equation of an 
accuracy and range which should cover most 
applications are given in Table 1. 

It is often more convenient to use a different 
dimensionless group : 

’ 
172 - 71 

teQ127* erfc [TV’/“] 

- +27* erfc [Q(T*)~/~] >. (9) 

Equation (9) is more convenient than (8) for 
graphical representation of many cases of 
practical importance. Plots are given in Fig. 2. 

It may be remarked that by superposition of 
solutions (7) for various 12, fluid temperature for 
any analytical heat input function may now be 
calculated, with desk calculators as sole compu- 
tational aid. 

Further, for very large dimensionless times, 
the solution above asymptotically approaches 

uH 2 
flo,-#*)l’2 f- 1 ---; . (10) 

Thus, a steady state is not approached. 

Investigation of the solutions (6) and (7) for 
various kinds of roots 

(LX) Both roots real. This implies S < 2. The 
values of the error function may be taken from 
standard tables and computed results may be 
obtained from the equations. 

(j3) Both roots complex. This implies S >- :. 
Tables for e-z:! . erfc (z) have recently been 
Published f31. However. the form in which these 

1lK.S 
7 

4 

0 0 
oaOO4 0~000394 
OW16 0~001553 
0.0036 oaO3444 
OtXI64 0.006034 
0~0100 0.009295 
0.0144 0.013197 
0.0256 0.02282 
0~0400 0.03470 
0.0576 0.04865 
0.0784 0.06452 
0.1024 0.08214 
0.1296 0.1014 
0.1600 0.1221 
0.1936 0.1443 
0.2304 0.1677 
0.2704 0.1923 
0.3136 0.2181 
0.3600 0.2448 
0.4356 0.2868 
0.5184 0.3306 
0.6084 0.3762 
0.7056 0.4234 
0.8100 0.4721 
1,000 0.5560 
1,210 0,643 

(b) S = 0.2 
0 
OXMl1885 
oaO3350 
0.005236 
0.016965 
0.03540 
0.06053 
0.09236 
0.13092 
0. I8850 
0.25676 

0 
0+01877 
oaO3331 
0.005181 
0.016465 
0.03350 
0.05559 
0.08239 
0.11307 
0.15630 
0.20417 

(c) s = l/4 
0 
0.0484 
0.0676 
0.0900 
0.2025 
0.2500 
O-3600 
0.4900 
0.640 

0 
0.0453 
0.0622 
0.0813 
0.1691 
0.203 I 
0.2774 
0.357 I 
0442 

1tti.r 
7 

11, 

1.440 
I.690 
1.960 

: 2.250 
1 2.560 
1 2.890 

3.24 
3.61 
4.00 
4.84 
5.76 

~ 6.76. 

I ;:; 

10.24 
11.56 
12.96 
14.44 
16.00 

1 17.64 
19.36 
21.16 

I 23.04 
25.0 
49.0 

100.0 

0.733 
0.825 
0.918 
I.014 
1.111 
1.210 
I.310 
1.399 
1.492 
I.70 
I.91 
2.12 
2.34 
2.56 
2.7X 
3.00 
3.21 
3.43 
3.65 
3.87 
4.09 
4.31 
4.53 
4.75 
6.98 

IO.34 

0.33511 0.25598 
0.42412 0~31115 
0.5236 0.36921 
0.7540 0.49241 
1.0263 0.62301 
1.3404 0.75942 
1.6965 0.90017 
1.9102 0.97902 
3.6493 1.54781 
7.6407 2.43761 

1.00 
1.44 
2.25 

/ g 

12.25 
25xKl 

0.6235 
0.8154 
1.1165 
1.3245 
1.641 
2. I80 
3.277 
4.932 
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(d) S = l/3 
0 
O+JO853 
0.01333 
001920 
002615 
0.03413 
0.04320 
0.05333 
0.07679 
0.1045 
0.1728 
0.2581 
0.3605 

0 
0.00841 
0.01309 
0.01876 
0.02535 
0.03285 
0.04120 
0.04789 
0.07125 
0.09498 
0.15096 
0.21396 
0.28470 

0.691 0.484 
0.941 0.618 
1.333 0.795 
1.920 1.031 
2.613 1.273 
3.413 1.519 
4.320 1.769 
6.453 2.276 
7.680 2.528 
9.013 2.783 

10453 3040 
20.144 4444 

(e) : = l 0 1.6132 1.0805 
0.00853 0.00848 1.9199 1.2243 
0.01333 0.01324 2.2533 1.3687 
0.01920 0.01906 2.6131 1.5132 
0.02615 0.02571 3.0000 1.6574 
0.03413 0.03364 3.4132 1.8010 
O@i320 0.04241 3.853 1.981 
0.05333 0.05212 4.320 2.087 
0.07679 0.07427 5.333 2.370 
0.10453 0.10016 6.453 2.650 
0.13652 0.12933 7.680 2.927 
0.1728 0.1615 9.013 3.202 
0.2133 0.1977 10.453 3.475 
02581 0.2344 11.999 3.747 
0.3072 0.2749 13.653 4.017 
0.3605 0.3171 15.413 4.287 
0.4181 0.3618 17.279 4.554 
0.4800 0.4086 19.077 4.823 
05808 0.4810 21,332 5.090 
0.6912 0.5570 23.519 5.356 
0.8321 0.6352 25.812 5,622 
0.9407 0.7159 28.212 5.887 
1.0799 0.7983 30.718 6.152 
1.3333 0.9380 33.331 6.417 

(f) S = 8 
0 
0.08258 
0.16186 
0.47557 
1.32128 
4.0464 

0 
0.08221 
0.16063 
0.46176 
1.26270 
3.2794 

8.258 5.603 
16,186 8.411 
33.032 11.638 
74.33 15.66 

206.5 22.6 

:e= ___ --__ 

functions are given needs some modification for 
our purposes, (see Appendix II). 

For convenience, the arguments are hence- 
forth applied to the case of constant heat input 
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only. The solution (9) may be written: 
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( 1 1 - ; U[q(S - $) . (T*y; 4 (T*y] 

3 - 1’S 
- 2x4s - a> v [d(S - 6, . (,*)1/z; 4 (T*y] 

(11) 
where U and V are functions explained in 
Appendix II. 

(y) Both roots equal and real, i.e. S = 4. From 
(3) we now have 

ase-gx &J(n + 1) 
’ = Kpq(q + am ’ pn’ (12) 

Proceeding as outlined above, the enclosure 
temperature may be found (Appendix I-c). We 
restrict ourselves here to giving the result for 
n =Oonly: 

+ 

Fluid temperature is derived again as before: 

UH 
L (,*)1/2 - 3 + 

fl,=2/77 i 1 
3 - ; 

y’r* er’14 . erfc - 
2 * (14) 

Now it can be seen that for all solutions, the 
dimensionless function uH/A, depends on 
the dimensionless characteristic time T* and on 
the parameter S only. 

Asymptotic solutions (limiting cases) 
Limiting cases of S = 0 may correspond to 

either (a) an infinitely great total fluid heat 
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capacity (S = 0), or(b) zero film heat convection 
resistance (a = co). At the other extreme 
S = CC may be obtained with either (c) no fluid 
heat capacity (s = co), or (d) infinite convection 
heat transfer resistance (a = 0). 

The asymptotic solutions are examined in 
Appendix 111-a. They lead to known classical 
results. 

2.4. Solution for the cavity of spherical shape 
Equation (1) and boundary conditions (2) 

take the following form: 

I 
t>O;r=R; Kg+H(u-v)=O ’ 

du 

i 

(16) 
Y = R; Mcf dt + H(u - v> = fb@ 

r-f co; u to remain finite. J 

The transformation 4 = w brings (15) back to 
the form of (1). 

Using operational calculus on the transformed 
equation yields a result for enclosure temperature 
(Appendix I-d) : 

3 

*1”(72-~-73~+~2”~73-71)+~3”~77,-~12) 

* c I-- ----------in- ~_.___ ~_~. _ 
t-7l,z2+1 

” = 1 

2s 

c[ 

r-R 
[--2?yl/(Kt)lmlllPerfc22/(Kt) (17) 

T?Z=O 

where 7V are the roots of the cubic equation 
(with reversed algebraical sign), 

and a,‘, is Kronecker’s delta. Similarly. fluid 
temperature is given by, 

r[(42) + I I +- ;‘(2)r[(rlz + 1)/21 . 

(19) 
For constant heat input, i.e. n = 0, equation 
(I 9) reduces to 

. + (~1,(72--r/3)+~2”(73-71)+~3v(~~~~~ 

6’ 7” 

‘i . [(l+aR- R~JeK~YZterfc [~,t/(d)]-(l+aR)]j. 

(20) 

For constant heat input (n = 0), the limit when 
t--f 00 is. 

(211 

i.e. steady state is approached, as time increases. 
Equations (17-20) have been investigated in 

the manner of (6-9) for the various kinds of 
roots of (18), viz. 

(u) All roots 7” real and different. 
(/3) Two roots conjugate complex, one root 

real. 
(y) All roots real, two roots identical. 
(6) All roots real and identical. 

The investigation is rather cumbersome and will 
not be described here.* Again, @) leads to com- 

~ ~~~ --~~~~ 
* Interested readers may obtain the details of the 

derivations from one of the authors (Z.R.). q3 + (a + 1/R)q2 + asq + as/R = 0 (18) 
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error functions with complex argu- practical heating. and ventilating applications 
the solutions with complex roots will be applic- 

cases were again investigated as able. As an example, for air at atmospheric 
results are given in Appendix III-b. pressure and temperature, of an equivalent 

thickness of 3 m in contact with any wall, with 
3. GRAPHICAL REPRESENTATION 

Inspection of all equations giving solutions 
for u and u for the plane-wall case will reveal 
two alternative methods of plotting, both having 
n as a parameter of the whole plot: 

UKS 
(a) L&/(S’K)~ 

versus T, with S as a parameter; 

or 
UH 

(b) .A&%)~ 
versus T* with S as a parameter. 

All these groups are dimensionless variables. 
For the exponent n = 0, method (a) will be more 
useful for those cases where s is not expected to 
approach the extreme values of zero or infinity, 
while the second method is suitable provided a 
does not approach those limits. Figs. (1) and (2) 

H = 15 kcal/(m2 degC h), and walls of standard 
concrete, Swill be equal to 30. 

A repetition of the same argument for the 
case of the spherical cavity leads to the con- 
clusion that here the dimensionless groups are, 
for any constant exponent II, the same as those 
given above. However, an extra parameter equal 
to aR also appears. It is, therefore, impractical 
to show general plots valid for all values of aR. 

4. DISCUSSION 

4.1. Demonstration of the accuracy of the method 
when applied to finite wails 

The case calculated by Wolfe [2] related to air 
contained by concrete walls only 8 in thick, and 
to constant heat input. Table 2 gives a com- 
parison of Wolfe’s data and those calculated 
from (11). 

give such plots for the plane-wall case, with Thus, it is seen that for periods shorter than 
constant heat input. Table 1 gives numerical 20 h, the error caused by assuming the walls 
data for this case. infinitely thick is smaller than 2.5 per cent. 

In practical cases the value of the parameter A similar result was obtained from tests [4]. 
S will be within the range of 10-500 for air en- 
closed in concrete walls, while for water S will 
be rather less than &.* Thus it is seen that for all 4.2. Comparison between the plane injinite-wall 

* An exception to this is the case when the fluid is 
model and the spherical cavity model as 

enclosed in a metal container buried in the soil: the 
applied to a cubical room 

contact resistance is here determined by the heat transfer This comparison was carried out for a cubical 

between the outer metal envelope and the soil, and may room containing air at atmospheric pressure 
be rather high. Thus S will be large. and temperature, with H = 3 kcal/(m” degC h), 
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0.001 2 4 F 0.0, L 4 6 0.1 2 4 eq.0 2 I I> it,0 

T+= &h-f 

Fro. 2. Dependence of uH/A, on T* = u%t. 

S = 260, and constant heat input. The com- Table 3. Comparison of plane-wall model to sphericul cacity 

parison was carried out for equivalent envelope model for a cubical room, large S 

area. Table 3 gives the results: 
In actual practice, aroom of doubly rectangular Equivalent 

cross section is, of course, much better repre- radius 

sented by the geometrical model of a sphere W 

than that of plane walls with no corner effects 
[6, 71. But from Table 3 it is clear that for short 

Table 2. Comparison of Wolfe’s data with results obttritled 
through equation (11) 

6.91 
Time 2.00 

(h) 5 10 20 30 40 50 70 0.50 

3.15 per cent 
(h) 

300 100 1000 
24.5 8.16 81.6 

1.5 0.51 5.1 

---- 
- 

ul4 
Wolfe 0.95 1.14 1.405 1.583 1.69 1.74 1.81 

u/f& 
equa- 
tion (11) 0.969 1.165 144 1647 1.83 1.98 2.25 

Differ- 
ence 
(percent) 1.97 2.1 2.5 4.1 8.3 13.9 24.3 

I 
- --A _ 

times the graphical plots given for the plane- 
wall model may be used for practical configura- 
tions, with small errors only. 

4.3. Other approsimate solutions 
Krischer [8] has proposed an approximate 

calculation method assuming that initially there 
is no heat dissipation to the walls, while from a 
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certain critical time onwards, all heat input is 
dissipated through wall conduction. The critical 
time is given by 

MCf 
tc =L ~ 

H' (22) 

With tc assumed as zero datum, wall temperature 
thereafter is calculated as for the constant flux 
case ([l], p. 75). 

The temperature variation according to 
Krischer, for S = 20, is also plotted in Fig. 2. 
As would be expected the greatest error, com- 
pared to’the exact solution, is obtained around 
the critical time. 

Another approximate method used for heating 
and ventilating purposes is to neglect air heat 
capacity. The errors of both Krischer’s method 
and this latter assumption are compared to the 
exact solution for infinitely thick walls in Fig. 3. 
The maximum error of Krischer’s method is 
seen to be at T* = 0.05: this corresponds to 
about 5 min for a practical case considered. 
Even after 15 min the discrepancy is still 15 per 
cent. 

5. CONCLUSIONS 

Solutions for two models representing a room 

containing a heat source with time dependent 
output, filled with a well-mixed fluid of finite 
heat capacity are given. Heat is dissipated to the 
walls with finite film heat-transfer resistance. 

The two models considered are: the plane, 
infinitely thick wall and the spherical cavity in 
an infinite solid. All physical properties were 
assumed constant. 

It is shown, that in most practical cases arising 
in air-conditioning technology, the problem 
leads to solutions expressed in terms of error 
functions with a complex argument. In some 
cases of storage reservoir technology the 
arguments will be real. 

These solutions, which to the best of our 
knowledge have not been previously published, 
represent generalizations of well known partial 
solutions for semi-infinite solids. 

Wolfe [2] considered a model closer to real 
conditions in one respect: with his model the 
cavity was bounded by plane walls of jnite 
thickness, with heat convection on the outside 
taken into consideration also. This was done for 
constant heat input rate only, and neglecting 
corner effects. 

The results given here are much simpler than 
those obtained by Wolfe, and moreover lend 

60 

FK. 3. Deviation of two approximate solutions from the exact semi-infinite wall solution (S = 20). 
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themselves to generalization for non-constant 8. 0. KRISCHER and W. KAST. Zur Frage des Wirme- 

heat input. Also, solutions were derived for the bedarfs beim Anheizen seltcn beheizter Gebiude. 

spherical model which, for thick walls (where Ges. Ing. 78. 321-352 (1957). 

corner effects are significant) should give iesults 
more accurate than those for the plane wall. 

Table 2 shows that the solutions here given are 
of adequate accuracy even for the practical 
configuration considered by Wolfe. In an 
engineering context, the possibility of giving the 
general solution in a graphical plot must be 
considered an important advantage. 

The assumption of simpler models in engineer- 
ing usage, such as neglecting fluid heat capacity, 
or the Krischer assumption can, on occasion, 
lead to considerable error, especially when 
applied to the design of a heated reservoir 
(small S). Estimates of the error for a case of air 
conditioning is given in Fig. 3. 

lt is interesting to note that the model employ- 
ing infinitely thick plane walls will not tend 
asymptotically towards steady state as time goes 
on (at constant heat input). Here, again, the 
spherical model is qualitatively closer to actual 
conditions in that for constant heat input it does 
tend towards steady state. 

Lastly, it is seen that for any given configura- 
tion and for all cases of heat input function 
discussed here, U/A1, is a unique function of 
dimensionless time. 

I. 

2. 

3. 

4. 

5. 

6. 

7. 
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APPENDIX I 

(a) Derii~ation of equation (3) 
Applying the Laplace transformation to (I) 

and (2): 

-0 - (l-1) 

In what follows V, is put equal to zero arbi- 
trarily. Eliminating ti between (I-2) and (l-3), 

il+~).~-~~~ii+~.~~~i!)_o 

I1 . ’ 2 
.y ;; 0 . (l-4) 

The solution of equation (l-l) taking (2) into 
account, is 

fi = Ae-cx + Be+qx q # 0 (I-5) 

where q2 = P/K; as the temperature has to be 
finite everywhere B s 0. 

Inserting (I-5) into (I-4) will furnish A: then 
the solution of (I-l) is given by (3). 

(b) Derivation of equation (7) 
The inverse Laplace transformation of 

gives 

m=O 

Inserting this into (5) and rearranging will 
furnish (6). This last equation may be differenti- 
ated, giving 
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inserting (6) and (l-7) into the second boundary 
condition (2) gives an expression for fluid 
temperature, (7): 

(c) Derivation of equation (14) 
The application of the inversion theorem to 

(12) may be simplified by differentiating (I-6) 
with respect to the parameter 7’. Hence the 
inverse transformation of 

e-&Q 

Pf’4(9 + 77’)8 
is 

1 1 2(n + 1) 
--. )p (_+)2n+2 N - $ +x + 2w 

1 

. ev’~+~t 

(7’) 2 

. erfc [’ & + 17’1/(4 1 
-22/(Kt/iT). e-x2’4Kt 

2n + 1 

+ $2 [2(n + 1) - m] 

WI = 0 

. [--2~‘~/(Kt)]miV~ erfc x- 
I 11 22/(KO . 

U-8 

The solution for v is again obtained by multi- 
plying expression (I-8) by [(as/K). AJ(n + l)]. 
It is convenient to discuss the properties of the 
solution on the simpler case of time independent 
heat input, i.e. for n = 0. This leads to equations 
(13) and (14). 

(d) Derivation of equation (17) 
The transformation 4 = vr brings (15) back 

to the form of (1): 

a+ a24 K--O 
It - ar (l-9) 

with boundary conditions, 

t=O $A=u=o (I-IO) 

t>O; r-R; a+ aY = #I (a + I/R) .- aRu 

(I-1 1) 

du 
r = R; Mcf bt + H(u - 9/R) = A#. 

(I-12) 

Applying the Laplace transformation to equa- 
tions (I-9) through (I-12) yields: 

d29 t>O; R<rr<oo;. 
dr2 

- q2$ + $ = 0 (I-13) 

d$ 
dr = 4 (a + l/R) - aRll (I-14) 

MC&~ - ~0) + H(Q - B/R) 
= &J(n + l)/pn+l. (I-15) 

The solution of these equations leads to 

Q = &e-g’ (I-16) 

where &’ is given by 

d = nX(n + 1) 

P nfl - 

ef@R 

’ [WcdW91(q + a + l/R) + W/(a R)l(q + I/R)’ 
(I-17) 

The subsequent calculations are carried out in 
a similar manner to those for the plane wall. The 
end result is equation (17). 

APPENDIX II 

Complementary error functions with complex 
arguments 

The tables, reference [3], give values of the 
function, 

W(Z) = e-2’ (1 + $;/~e~‘d[~ (II-l) 

where 
z=e+jh (11-2) 

thus : 

w(z) = qe; A) f,jV(O; A). (H-3) 

Tabulated values of U and V are given. 
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Now from (11-l 1, 

(11-4) 

Thus from the tabulated values, erfc (z) may be 
obtained, taking B as the imaginary variable and 
--h as the real variable. Also, symmetry with 
respect to the imaginary axis in the X, 0 plane 
implies the same in the U, V plane. Thus, 

eZ’ erfc z = U(h; 0) ~- jV( h; 0) (11-5) 

eb erfc f = U( h; 0) + jV(X; 0). (11-6) 

For the case discussed, the two roots, equation 
(4), are the two conjugate complex variables 3 
and f. 

APPENDIX III 

Asymptotic solutions 
(a) The plane NUII case 

The asymptotic solutions corresponding to 
cases (a) through (d) of paragraph 2.3 of the 
paper are here investigated. These asymptotic 
solutions are of significance as they delimit the 
range of possible solutions in Figs. 1 and 2. 

For case (a) (S = 0) a trivial identity is 
obtained from the general solution, implying no 
change in fluid temperature with time. In order 
to analyse case (b) (a = ~1). it is convenient to 
write (6) for n = 0 in terms of a characteristic 
time which does not include the constant a: 

where 7 = s2td. The limit for S == 0 involves the 
calculation of 

lim (et’ erfc E) = 0 
f--.a, 

(111-2) ’ erfc 

r ~- R 

1 
‘i 

2-\.‘(Kt) 
+ ‘h\./(Kt) J . (111-6) 

which is easily obtained by application of For s-r ~KJ (zero fluid heat capacity) (20) gives 
1’Hopital’s rule. Thus for S = 0 (case b), as limiting value (4), p. 248 of reference [l]. 

The last equation is identical with the classical 
result ([1], p. 306, equation 12). Fluid tempera- 
ture is obtained by setting s = 0 in (111-3). 

Case (c) (s === % ): it may be seen from (6), 
again limiting consideration to constant heat 
input (n --- 0), that as s P ‘~1, 

e-.c”,lh-t ~_ x erfc 
.v 

(111-4) 

Equation (111-4) is again in agreement with the 
classical result ([l], p. 75, equation 7). 

Case (d) (a = 0) corresponds to zero heat 
dissipation to the walls. After considerable 
manipulation the result 2: = 0 is obtained from 
equation (111-l). Thus fluid temperature rises 
linearily with time, i.e. 

(I 11-5) 

Cases (b) and (d) are represented by curves 
S = 0 and S = cc in Fig. 1 respectively, while 
case (c) is represented by the curve S 1 a in 
Fig. 2. 

(b) The spherical case 
Only the non-trivial cases a -+ 30 and s + cc, 

are investigated here. 
For a-z- m (zero contact resistance), one of 

the three roots of (18) increases without bounds. 
The limit for (17) becomes, 
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R&m6--Une analyse est presentee du comportement en regime transitoire d’un reservoir contenant 
du fluide bien melange. Des solutions nouvelles donnees se rapportent a des modeles geometriques 
simples, en prenant cependant compte de la variation de l’enthalpie totale du fluide avec le temps, et 
de la resistance Q la transmission de la chaleur par convection aux parois. Ainsi, les resultats font 
avancer la solution du probltme en toute sa gentralite. Les modbles geometriques subis a l’analyse 
sont la parois plane semi-infinie en contact avec du fluide bien melange, et la cavite spherique dans 
un solide d&endue infinie. La fourniture de la chaleur peut etre soit a debit constant, soit a debit 
variable avec le temps. 

Des representations graphiques de validite g&&ale et des tables numeriques sont donntes pour le 
cas de la paroi plane et du debit de la chaleur constant. 

Zusammenfassung-Eine Untersuchung der zeitabhangigen Temperaturanderung von intern be- 
heizten Fliissigkeitsspeichern ist in der vorliegenden Arbeit wiedergegeben. Neue LGsungen fur 
einfache geometrische Modelle, die immerhin den Warmeinhalt der Fliissigkeit und den Konvektions- 
widerstand an den Wanden mit in Betracht nehmen, werden behandelt, als ein Schritt zur Lbsung 
des allgemeineren Problems. 

Die geometrische Modelle sind : die halbunendliche flache Wand in Bertihrung mit gut gemischter 
Fliissigkeit und der kugelformige Hohlrdum. Lbsungen fiir Zeitabhangigen und Zeitunabhangigen 
Warmestrom werden wiedergegeben. 

Allgemeingtiltige graphische Darstellungen sowie Tabellen fur den Fall der flachen Wand und 
Zeitunabhangiger Wlrmezufuhr sind in der Arbeit enthalten. 

Arrnorannn-B CTaTLe 113mrae~cfl Hcc.~e~onaII~Ie 3aBmIIRIbrX OT BpeMemI zI3MeIIewfi Teme- 

paTJ'pbI B II3rpeTLIXa3-BlIyTpM COCJ'~~SHEUIOJIIIeIIIILIX FKlIj~IEOCTLH). ,?aCCMaTpHBaIOTCFI HOBbIe 

paaperrremn ~JIE IIpOCTbIX reonIeTpwIecxisIX Moneneir, Iqmi$I JWiTbIBaeTCH TeIKIO~MItOTCL 

?fUIRIFOCTII a Tame KOHBeK~lIOHHOe COIIpOTHBJIeIIIIe S CTeIIOIE. 3TII IICCne~OBaHIW IIpII- 

6IAlKaIOT HaC K pa3peIIIeHIwJ BOIIpOCa B 06I& $Op~e. 

PaCCMaTplIBaIOTCR ABe reonIeTprrsecmIe ~io~emr: o;lHa 113 IIIIX 3~0 nony-FenKoHesHa5I 

IIJIoCKaFI CTeHKa B COIIpIIKOCHOBeHIIII C XOpOIIIO C&IeIIIaHHOir 1KLIjSIIOCTLI0, ApyI'aFI 3T0 IIIapO- 

06pa3HaH IIOJIOCTL. B CTaTbe npeJcTaBne1IbI pa3pemeIim nplr :~amIrmfoM, a Tams rqm 

ue3amcmoix 0~ Bpeixem, nplIToIte Tenna. 

rIIprrnogn~cn oC,u~w2 rpaifimecme 113JIOiKeHIIH II WICJIeHHbIe TakIrII~bI ~:Ifl Irno~rtoii 

CTCHICII qw II~~TOHHHOM np~IToI~e Tema. 


